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a b s t r a c t

Constrained low-rank matrix approximations have been known for decades as powerful linear di-
mensionality reduction techniques able to extract the information contained in large data sets in a
relevant way. However, such low-rank approaches are unable to mine complex, interleaved features
that underlie hierarchical semantics. Recently, deep matrix factorization (deep MF) was introduced
to deal with the extraction of several layers of features and has been shown to reach outstanding
performances on unsupervised tasks. Deep MF was motivated by the success of deep learning, as it
is conceptually close to some neural networks paradigms. In this survey paper, we present the main
models, algorithms, and applications of deep MF through a comprehensive literature review. We also
discuss theoretical questions and perspectives of research as deep MF is likely to become an important
paradigm in unsupervised learning in the next few years.
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1. Introduction

In the current era of data deluge, the automatic extraction
f interpretable features in unlabeled data sets is a key chal-
enge. For many years, linear algebra tools have been used to
eal with such tasks. Among these techniques, the constrained
ow-rank matrix approximations (CLRMA) [1] mine relevant in-
ormation from large data sets and have therefore been drawing
ttention of numerous researchers. In practice, many data sets
ppear to be well approximated by low-rank matrices [2], and
ence CLRMA are particularly appropriate to extract pertinent
nformation. Within this general framework, some well-known
echniques such as principal component analysis (PCA) [3], sin-
ular value decomposition (SVD) [4], sparse coding [5], sparse
omponent analysis (SCA) [6], and non-negative matrix factor-
zation (NMF) [7], to name only a few, have been used in many
pplications for the last decades. These variants mostly differ by
he function chosen to measure the quality of the approximation
nd by the additional constraints considered. Given a set of n data
oints lying in an m-dimensional space, a matrix X ∈ Rm×n is

built such that each data point corresponds to a column of X .
The goal of a low-rank matrix approximation is to express each
data point as a linear combination of a few basis vectors. In other
words, one has to find a matrix W ∈ Rm×r and a matrix H ∈ Rr×n

such that each data point can be approximated as

X(:, j) ≈

r∑
k=1

W (:, k)H(k, j) for j = 1, . . . , n,

where W (:, k) denotes the kth column of W and corresponds to
the kth basis element, and H(k, j) is the weight with which the kth
basis element appears in the jth data point. More precisely, H(:, j)
is the representation of data point X(:, j) in an r-dimensional lin-
ear subspace spanned by W . In matrix form, this approximation,
also sometimes called factorization, is written as X ≈ WH .

On the other hand, deep neural networks have been widely
used as deep learning gained success in many supervised clas-
sification tasks [8,9] and even in generative models [10]. Their
main advantage lies in their ability to combine features in a highly
non-linear way but their theoretical foundations remain quite
elusive.

At midway between the linear algebra models and the deep
neural networks lies deep matrix factorization (deep MF), the
core of this paper. The main motivation of deep MF is to combine
both interpretability, as in classical matrix factorizations, of which
it is an extension, and the extraction of multiple hierarchical
features, as allowed by multilayer architectures. Linearity offers
impressive interpretability power and easily allows to understand
how the features are combined.

One layer matrix approximations are not able to extract multi-
level features in complex data sets. The goal of deep MF is to
decompose a data matrix X ∈ Rm×n as

X ≈ W W . . . W H , (1)
1 2 L L

2

where L is the number of layers, Wl ∈ Rdl−1×dl for l =

1, . . . , L with d0 = m, and HL ∈ RdL×n
+ . The approximation in (1)

corresponds to successive factorizations of X:

X ≈ W1H1,

H1 ≈ W2H2,
...

HL−1 ≈ WLHL,

(2)

where Hl ∈ Rdl×n
+ for all l. Each matrix Wl (l = 1, . . . , L)

can be interpreted as the feature matrix of layer l and each Hl
can be interpreted as the representation matrix of layer l. In
other words, successive factorizations of rank dl (1 ≤ l ≤ L)
are performed such that various recombinations of the features
of the first layers would appear in the following ones allowing
numerous interpretations of the semantics hidden in the data set.

One of the first applications for which deep MF has proven
to be useful is the extraction of facial features, as described in
the seminal paper of Trigeorgis et al. [11]. Given a set of n gray-
scale facial images, each one described by m pixel values, deep
MF extracts several layers of features, each one corresponding to
a specific interpretation ranging from low-level features at the
first layer to high-level features at the last layer.

Fig. 1 displays the features extracted at each layer by deep
NMF (that is, deep MF with nonnegativity constraints on the
factors Wl, l = 1, 2, . . . , L, and HL) on the CBCL faces data set,
originally used for standard NMF by Lee & Seung [7]. This data
set contains 2429 gray-scale images of 19 × 19 pixels, with
L = 3 layers where d1 = 100, d2 = 50 and d3 = 25. At the
first layer, 100 low-level features corresponding to very specific
and localized facial characteristics are extracted. At the second
layer, deep MF extracts 50 meaningful parts of the faces, such as
eyebrows, noses, eyes, and mouths. Finally, the last layer exhibits
faces made of several facial features, and is more closely related
to the identities of the persons. This illustrates the fact that, at
each layer, deep MF extracts higher-level features obtained by
combining lower-level features from the previous layer.

To compute the solution displayed on Fig. 1, we used a simple
multi-layer approach; see Section 3.1. At the first layer, we used
the separable NMF algorithm of [12] which provides a sparse
solution, and at the next layers, we used the fast NMF algorithm
of [13].

In summary, deep MF is able to extract hierarchical facial
features corresponding to the columns of

∏i
l=1 Wl at the ith layer

that become less localized as the deep MF unfolds.
Without any constraint on the factors of deep MF, (1) merely

degenerates into classical matrix factorization. In this case, the
product of the matrices Wl’s could be replaced by a single equiva-
lent (without additional particular property) matrix whose rank is
less than or equal to the minimum of the dl’s and the factorization
is highly non-unique. For example, one could simply replace any
Wl by WlQ and Wl+1 by Q−1Wl+1 for any l and any invertible
matrix Q ∈ Rdl×dl , and obtain another decomposition of X
with the same approximation error but most likely with a rather
different interpretation. Therefore, constraints on the factors such
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Fig. 1. Application of deep NMF on the CBCL face data set, with L = 3, d1 = 100, d2 = 50, and d3 = 25. Each image contains the features extracted a layer: (a) first
ayer W1 , (b) second layer W1W2 , and (c) third layer W1W2W3 .
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as non-negativity and sparsity, and/or regularizations should be
considered, which results in various deep MF models. Most deep
MF models assume the non-negativity of several factors of the
decomposition and therefore extend some NMF ideas.

This paper serves as a survey on the recent literature on
deep MF. It is organized as follows. We first briefly summarize
the main ideas behind CLRMA in Section 2. In Section 3, we
present the early multi-level models, namely multilayer MF up
to recent deep MF, their regularizations, and the different algo-
rithmic approaches to tackle them. In Section 4, we present the
performances of deep MF on two illustrative examples (namely,
recommender systems and hyperspectral imaging), and review
the main applications. Connections with deep learning are initi-
ated in Section 5 while Section 6 highlights the lack of theoretical
guarantees that have come with the models so far. However, con-
tributions from deep linear networks might open new directions
of research. Finally, in Section 7, we summarize the identified
perspectives of future research and conclude.

2. A brief summary on matrix factorizations

In this section, we recall the basics of matrix factorizations,
which will be key to understand deep MF.

Low-rank matrix approximations consist in finding two ma-
trices W ∈ Rm×r and H ∈ Rr×n such that the product WH
approximates as well as possible a data matrix X ∈ Rm×n made
of n points in dimension m where r , called the rank of the
approximation, is generally a small value compared to m and n
and is fixed in advance in many practical applications.

A critical aspect of matrix approximations is the choice of the
loss metric between X and WH , that is, the way to evaluate how
good the approximation is. Most models aim at minimizing a
3

divergence between the original data matrix and its low-rank re-
construction. More precisely, the β-divergences are usually con-
sidered to quantify the fidelity between the original data matrix
and its low-rank approximation [14], and a common choice in the
community is to minimize the Frobenius norm of the difference
between these two matrices, which corresponds to β = 2. The
eason for this choice is twofold: (1) the squared Frobenius norm
f a matrix is equal to the sum of its squared elements, and hence
ender the computation of the derivatives straightforward in the
ptimization process, and (2) it corresponds to the maximum
ikelihood estimator in the presence of additive Gaussian noise
hich is a reasonable model in many applications. Therefore, the
tandard matrix factorization optimization problem is formulated
s

min
W∈Rm×r
H∈Rr×n

∥X − WH∥
2
F , (3)

where ∥A∥
2
F =

∑
i,j A(i, j)

2 is the squared Frobenius norm of
matrix A. This essentially corresponds to PCA (although PCA typ-
ically performs mean centering before computing the principal
components), and can be computed via the SVD.

A usual feature of the data matrix is that it is entry-wise
non-negative, that is, X(i, j) ≥ 0 for all i, j, which is denoted

≥ 0. Many real-world applications record such non-negative
easurements, which has led to the development of the so-called
on-negative matrix factorization (NMF) model [15]. In NMF, the
nput data matrix X is element-wise non-negative and in turn,
entry-wise non-negativity is required for both factors W and H .
MF has been widely studied, in terms of theoretical guarantees,
odels and applications [16–20] and is formulated as

min
W∈Rm×r

∥X − WH∥
2
F such that W ≥ 0 and H ≥ 0, (4)
H∈Rr×n
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hich corresponds to (3) with the additional non-negativity con-
traints.
A strong advantage of NMF is the interpretability of the fac-

ors [18]. The matrix W is often considered as the matrix of
eatures, with each column of W corresponding to a basis vector,
hile the matrix H corresponds to the activations of each basis
ector in each original data point. Especially, if it is also required
hat the sum of the elements of any column of H is equal to 1,
hat is, H is column stochastic with

∑r
j=1 H(j, k) = 1 for all k,

hen the entries of the kth column of H can be interpreted as the
roportions in which each feature vector appears in the kth data

point. In this sense, NMF can be seen as a soft clustering technique
as for all j and k, H(k, j) is the membership indicator of the jth
data point in the kth cluster. This model is sometimes referred
to as simplex-structured matrix factorization; see [21] and the
references therein.

Most of the time, additional properties are enforced for the
two factors W and H . This can be translated by hard-coded
constraints or through a penalty term called regularizer added
to the data fitting term in the objective function. Several models
and algorithms have been designed, exploiting geometric or al-
gebraic properties [19]. Among the most widely used techniques,
minimum-volume NMF (MinVolNMF) [22–24], sparse NMF [25],
and variants of archetypal analysis (AA) [26–28] have led to the
best performances. For example, minimum-volume NMF aims
at minimizing the volume delimited by the basis vectors, while
sparse NMF imposes that the factors only contain a reduced
number of non-zero entries. Moreover, these methods start to be
supported by theoretical advances, such as identifiability results
which provide conditions under which the ground-truth matrices
W and H are unique (up to trivial ambiguities such as permuta-
tion and scaling); see [24] and the references therein. Some of
these variants will be detailed in Section 3.2 as they have been
extended to the multi-layer case.

NMF is an NP-hard non-convex problem [29] which is gen-
erally solved through an alternated scheme known as block-
coordinate descent (BCD), as described in Algorithm 1. This con-
sists in alternatively optimizing one of the two factors of (4)
while keeping the other fixed. Note that the corresponding sub-
problems, that is, update_W and update_H in Algorithm 1, are
onvex nonnegative least squares problems which are efficiently
olvable.1

Algorithm 1 Two-block coordinate descent to solve NMF

Input: Nonnegative matrix X, rank r of the factorization
Output: Matrices W and H minimizing Eq. (4)
1: Compute initial matrices W (0) and H (0), t = 1
2: while stopping criterion not met do
3: W (t)

= update_W(X,W (t−1),H (t−1))
4: H (t)

= update_H(X,W (t),H (t−1))
5: t = t + 1
6: end while

3. Deep MF models and algorithms

Although CLRMA such as NMF with negativity constraints and
CA with sparsity constraints lead to a compact and meaningful
epresentation of the input data, they are limited by the shal-
owness of the representation. Such techniques are only able to
xtract a single layer of features, preventing to reveal hierarchical
eatures. While the standard matrix factorization decomposes the

1 They can be solved for example in Matlab using the function lsqnonneg.
4

data matrix in only two factors, deep MF, inspired by the success
of deep learning, is able to extract several layers of features
in a hierarchical way, giving new insights in a broad range of
applications.

Deep MF considers a product of matrices Wl’s (l = 1, . . . , L)
in place of a single matrix W in the approximation; see (1). As
constraints on the factors of this decomposition are necessary
to make the model meaningful (see Section 1), the next sec-
tions present various models and algorithms of deep MF. We
first present the evolution from the early multi-layers models
to the recent deep models in Section 3.1. Then, in Section 3.2,
we describe the main variants, which are inspired from those of
classical matrix factorizations. Section 3.3 describes the possible
algorithmic choices and briefly discusses the computational cost.

3.1. From multilayer MF to deep MF

The first model extending CLRMA to several levels is multi-
layer NMF proposed by Cichocki et al. in 2006 [30,31]. Based
on the hierarchical factorizations of a non-negative data matrix
X ∈ Rm×n

+ as described by (2), multilayer MF decomposes X in
a sequential manner. At the first layer, a low-rank factorization
of X is computed such that X ≈ W1H1. At the second layer, the
matrix H1 is factorized as H1 ≈ W2H2, and so on until HL−1 is
decomposed as WLHL; see Algorithm 2. Moreover, all the factors
of the decomposition are constrained to be non-negative.

Algorithm 2 Early multilayer NMF [30]

Input: Non-negative data matrix X, number of layers L, inner
ranks dl

Output: Matrices W1, . . . ,WL and H1, . . . ,HL
1: Y = X
2: for l = 1, . . . , L do
3: (Wl,Hl) = Algorithm 1 (Y , dl)
4: Y = Hl
5: end for

However, the multilayer NMF of [31] does not investigate
much the hierarchical power of deep schemes as the decompo-
sition is purely sequential, that is, multilayer NMF is equivalent
to a succession of successive single layer NMFs, with a single
forward pass. More precisely, Algorithm 2 consists in sequentially
minimizing the reconstruction errors ∥Hi−1 − WiHi∥

2
F for all i =

, . . . , L with H0 = X , but it does not involve a global cost
function. In other words, the error is minimized layer by layer
as in (4), but there is no retroaction of the last layers on the first
ones.

A key improvement was achieved by the papers of Trigeorgis
et al. who introduced deep MF [11,32]. The data matrix X still un-
dergoes successive factorizations as in (2), but the breakthrough
lies in the way the optimization of the factors Wl’s and Hl’s is
performed. The main algorithmic novelty of deep MF (Algorithm
3) compared to multilayer MF (Algorithm 2) is the iterative up-
dates of the factors: As opposed to multilayer MF that uses a
purely sequential approach, deep MF not only propagates the
information from the first, more abstract layer, to the last, more
refined layer, but also propagates the information in the reverse
direction.

The following error function involving the factors of all layers
is considered

L(W1,W2, . . . ,WL;HL) = ∥X − W1W2 . . .WLHL∥
2
F , (5)

and a block-coordinate descent strategy is used to iteratively
update all the factors. The deep MF algorithm [11] is described
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Fig. 2. (a) MF, (b) multilayer MF [30], (c) deep MF [11]. An arrow means a
atrix product is performed: H −→

W
X means that H is multiplied by W to

pproximate X .

n Algorithm 3, and illustrated on Fig. 2(c). In Algorithm 3, arg
educe means that the factor is updated through some algorithm
see Section 3.3) that (typically) decreases the objective function
or several iterations.

Algorithm 3 Deep semi-NMF [11]

Input: Data matrix X, number of layers L, inner ranks dl
Output: Matrices W1, . . . ,WL and H1, . . . ,HL

1: Compute initial matrices W (0)
l and H (0)

l for all l through a
sequential decomposition of X (for example Algorithm 2)

2: for k = 1, . . . do
3: for l = 1, . . . , L do
4: A(k)

l =
∏

j<l W
(k)
j

5: B(k)
l =

{
H (k−1)

L if l = L
W (k−1)

l+1 H (k−1)
l+1 otherwise

6: W (k)
l = arg reduce

W
∥X − A(k)

l WB(k)
l ∥

2
F

7: H (k)
l = arg reduce

H≥0
∥X − A(k)

l W (k)
l H∥

2
F

8: end for
9: end for

Several comments can be formulated:

• First, the work of Trigeorgis et al. was inspired by semi non-
negative matrix factorization (semi-NMF) [33], a variant of
NMF where only one factor, typically H , must contain non-
negative entries while the other W is allowed to contain
mixed-sign elements. Therefore, this model should rather
be called deep semi-NMF as the Wl’s are not directly con-
strained to be non-negative, and the matrix X is not required
5

to have non-negative entries. However, one should keep in
mind that each factor Hl ≈ Wl+1Hl+1 is required to be
non-negative, which implies an implicit constraint on the
Wl’s.
In practice, the requirement for non-negativity constraints
on the basis vectors Wl’s depends on the application: as
most physical systems record non-negative data, it often
makes sense to impose the non-negativity of the basis
vectors. Therefore, if non-negativity of the basis vectors is
meaningful, one can easily modify the model by adding
nonnegativity constraints on the Wl’s, and modifying line 6
of Algorithm 3.

• Second, to initialize all factors, a forward decomposition of
the input matrix is employed, as done in Algorithm 2. Once
all the factors are initialized, the updates of all matrices as
in Algorithm 3 are performed until some stopping criterion
is met.

• Third, the attentive reader may have noticed that Algorithm
3 does not correspond to applying a BCD method on (5)
by optimizing the factors (W1, . . . ,WL,HL) alternatively. In
fact, the nonnegative matrices Hl (l = 1, . . . , L − 1) are
intermediate variables that do not appear in (5). However,
one needs to remember the underlying sequential decom-
position of (2): as Hl ≈ Wl+1Hl+1 (l = 1, . . . , L − 1)
are constrained to be non-negative, they have a dedicated
update rule. However, this raises important research ques-
tions that have not been investigated much. In particular,
other possibilities in the expression of B(k)

l are possible; for
example, [34] considers B(k)

l = (
∏

j>l W
(k−1)
j )H (k−1)

L while
simply setting B(k)

l = H (k−1)
l also makes sense, without

a clear motivation why one should be preferred over the
other. Moreover, how does replacing the function to min-
imize at line 7 by ∥H (k)

l−1 − W (k)
l H∥

2
F change the iterates

Hl’s? If non-negativity constraints are imposed on the Wl’s,
a classical BCD can be applied to optimize alternatively the
factors of (5), as described in Algorithm 4, where only the
variables (W1, . . . ,WL,HL) are alternatively updated. Note
that nonnegativity constraints can be replaced with other
constraints such as sparsity.

Algorithm 4 BCD to minimize Eq. (5)

Input: Data matrix X, number of layers L, inner ranks dl
utput: Matrices W1, . . . ,WL and HL minimizing Eq. (5)
1: Compute initial matrices W (0)

l for all l and H (0)
L

2: for k = 1, . . . do
3: for l = 1, . . . , L do
4: A(k)

l =
∏

j<l W
(k)
j

5: B(k)
l = (

∏
j>l W

(k−1)
j )H (k−1)

L

6: W (k)
l = arg reduce

W≥0
∥X − A(k)

l WB(k)
l ∥

2
F

7: end for
8: H (k)

L = arg reduce
H≥0

∥X − W (k)
1 · · ·W (k)

L H∥
2
F

9: end for

• Finally, the choice of the loss function itself is not obvious.
In CLRMA, this issue has been investigated thoroughly, and
several strategies exist, based on the statistic of the noise,
or cross validation, among others [35]. In deep MF, the
question of the structure of the loss function also arises. Is
a loss function of the type

D(X,W W . . .W H ),
1 2 L L
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where D(A, B) is a similarity measure between two matrices
A and B, a good choice? Or would a loss function that
balances the contribution of each layer, such as

L = D(X,W1H1) + λ1D(H1,W2H2) + · · ·

+λL−1D(HL−1,WLHL),

be more appropriate? This question has not been addressed
yet, to the best of our knowledge. Moreover, most works in
the deep MF literature have only considered the Frobenius
norm. It would be worth to investigate other similarity
measures such as the Kullback–Leibler and Itakura–Saito
divergences, which have been shown to be particularly ap-
propriate for specific applications in the case of standard
NMF [36,37].

To sum up, a comparison of one-layer matrix factorization,
ultilayer MF [30] and deep MF [11] is illustrated on Fig. 2.
ultilayer MF on Fig. 2(b) and deep MF on Fig. 2(c) both perform
everal levels of decomposition but the key difference is the
terative nature of the update rules in deep MF, while the decom-
osition is only sequential, that is, unidirectional, in multilayer
F.

.2. Variants and regularizations of deep MF

Beside the standard models presented in the previous section,
ome variants have been studied in the recent literature. These
ariants consist in adding constraints on the factors or enforc-
ng some properties, and are mostly inspired from CLRMA. As
ighlighted in Section 1, without any additional constraints on
he factors, deep MF admits highly non-unique decompositions.
he uniqueness of the solution is critical to ensure reproducibility
nd interpretability of the results. Depending on the application
t hand, various constraints and regularizations can be used. In
his section, we briefly review some of these models. In many of
hem, non-negativity is assumed on the factors, and the variants
re therefore closely related to various NMF models.

.2.1. Deep orthogonal NMF
Orthogonal NMF (ONMF) [38] is a variant of NMF which im-

oses that the matrix H is nonnegative and row-wise orthogonal,
hat is, H ≥ 0 and HHT

= Ir where Ir is the identity matrix of
imension r . In other words, all rows of H are orthogonal to each
ther, and their l2 norm is equal to 1. It is easy to see that these
onstraints imply that there is at most one non-zero value in each
olumn of H . Hence each data point is only associated to one basis
ector (one column of W ), and ONMF is equivalent to a weighted
ariant of spherical k-means [39], which is a hard clustering
roblem. ONMF therefore imposes that each data point belongs to
single cluster which is represented by a single basis vector. This
llows a very straightforward interpretation of ONMF factors: the
olumns ofW are cluster centroids, while the columns of H assign
ach data point to its closest centroid (up to a scaling factor).
A relaxation of the orthogonality constraint consists in adding
penalty term of the form

∑
j<k H(j, :)H(k, :)T to the objective

unction. This is referred to as approximately orthogonal NMF
AONMF) [40].

The deep version of ONMF was introduced in [41] and en-
iched in [42]. The decomposition is slightly different than in
ulti-layer and deep MF because rather than having the activa-

ion matrices Hl’s successively decomposed, they decompose the
eatures matrices Wl’s:

X ≈ W1H1,

W1 ≈ W2H2,
...
WL−1 ≈ WLHL, e

6

eading to X ≈ WLHL · · ·H1, with each Hl constrained to be
onnegative and row-wise orthogonal, that is, Hl ≥ 0 and HlHT

l =

r for all l. Similarly, deep AONMF adds a penalty to the objective
hat minimizes the inner products Hl(j, :)Hl(k, :)T , for all j ̸= k
n each layer l. Applying the successive decompositions over the
asis matrices Wl’s rather than the activation matrices Hl’s as
n [11] seems more natural: it allows to directly interpret the
asis vectors of a given layer as combinations of the basis vectors
f the next layer. For example, if the ranks dl’s are chosen such
hat dL = dL−1 − 1, dL−1 = dL−2 − 1,. . . , d2 = d1 − 1, each layer
will merge two clusters of the previous layer while keeping the
others unchanged, and hence deep ONMF performs a hierarchical
clustering. This will be illustrated on two showcase examples in
Section 4.1.

3.2.2. Deep sparse MF
A very common constraint considered in CLRMA is the spar-

sity of some factors, referred to as SCA and closely related to
dictionary learning (see Section 3.2.7). It consists in limiting the
number of non-zero elements of W and/or H . Many papers have
studied the case of one-layer sparse MF, see for example [25,43–
46] among others. The goal of sparse MF is to render the factors
more interpretable. In particular, the fact that each column of H
contains only a few non-zero entries means that each data point
is associated with a few basis vectors.

The extension of sparse NMF to the deep setting was proposed
in [47]. Based on (2), an ℓ1 norm penalty is considered either
n each column of the matrices Wl’s and/or on each column

of the matrices Hl’s. Similarly to shallow sparse MF, the goal
of sparse deep MF is to obtain sparse and easily interpretable
factors at each layer. The subproblems w.r.t. the regularized fac-
tor can be efficiently solved for example through a proximal
gradient descent method, such as the (fast) iterative shrinkage
thresholding algorithm ((F)ISTA) [48]. Note that a normalization
of the other factor should be used to avoid a pathological case
where the entries of the factor for which sparsity is promoted
tend to zero while those of the other factor tend to infinity,
because of the scaling degree of freedom in such decompositions
(WlHl = (αWl)(Hl/α) for any α > 0). Furthermore, using the
same regularization parameter for all columns of a factor at
a given layer is discouraged. In practice, several regularization
parameters can be tuned automatically to ensure balanced levels
of sparsity [49]. Another sparse framework, inspired by multilayer
NMF [30], consists in adding a regularizer based on the Dirichlet
distribution on the columns of the factors [50].

There exists many ways to impose sparsity on the factors, such
as ℓ0 norm [51] or ℓ1/2 norm [52] regularizations, among others.
Inspired by deep learning, dropout could also enforce sparsity.
Dropout [53] consists in randomly ‘‘dropping’’ some activations
during the learning process to improve generalization. It has
recently been employed for one layer NMF [54], and was shown
to be equivalent to a deterministic low-rank regularizer [55].
It would be interesting to see to what extent dropout might
regularize deep MF networks as well. Therefore, deep sparse MF
has not yet been explored to its full extent.

3.2.3. Deep non-smooth NMF
Non-smooth NMF (nsNMF) [56] consists in using a so-called

smoothing matrix S betweenW and H in NMF which has the form

S = (1 − θ )Ir +
θ

r
eeT ,

where e is the vector of all ones of appropriate dimension. Note
that nsNMF reduces to NMF when θ = 0. The parameter θ ∈

[0, 1) promotes the sparseness of both W and H . Let us briefly
xplain why. We have WS = (1 − θ )W + θw̄eT where w̄ is the
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verage of the columns of W , that is, w̄ =
1
r We, and w̄ is denser

than any column of W . When θ > 0, WS therefore moves the
columns of W towards w̄, and W is sparser than W̃ = WS.

Deep nsNMF (dnsNMF) [34] introduces a smoothing matrix
at each layer of (2), with a common fixed parameter θ , that is,
X ≈ W1S1H1 and Hl−1 ≈ WlSlHl for all l = 2, . . . , L with
Sl = (1 − θ )Idl +

θ
dl
eeT . Note that multilayer non-smooth NMF

as already proposed in 2013 in [57] to empirically show how
multilayer architecture, very similar to the one proposed by
ichocki et al. [31], is able to extract features in a hierarchical
ay in the context of text mining, but they did not use any
ackpropagation strategy.

.2.4. Deep archetypal analysis
Archetypal analysis (AA) [26], also known as convex NMF [33]

s a variant of NMF in which the basis vectors are constrained
o be convex combinations of the data points. In other words, in
ddition to the constraints stated in (4), one should have W = XA
here A ≥ 0 and AT e = e. Intuitively, the basis vectors are
estricted to lie in the convex hull of the data points, and can
e interpreted as extremal points of the data set. Although the
itting error might be higher than in standard NMF, the closeness
f the archetypes to the convex hull of the data confers them a
etter interpretability.
The first proposal of deep AA was made in [58], to the best

f our knowledge, for the acoustic scene classification task. Given
data matrix X composed of n temporal frames characterized by
nm-dimensional features vector, a discriminative representation
s learnt through successive AA decompositions performed in a
reedy forward way:

X ≈ XA1H1,

H1 ≈ H1A2H2,
...

HL−1 ≈ HL−1ALHL.

owever, schemes including a ‘backpropagation’ stage do not
eem to have been tested yet for deep AA.
Finally, the non-deterministic deep AA of Keller et al. [59]

pproximates the data points by samples drawn from a Gaus-
ian distribution whose parameters are learnt through a deep
ncoding phase and is based on the deep variational information
ottleneck framework [60]. Since the model is probabilistic and
on-linear, the spirit is quite different from the one of deep MF
odels presented previously.
Closely related to AA, concept factorization (CF) consists in ap-

roximating the basis elements as linear combinations of the data
oints, the difference with AA lies in the absence of the sum-to-
ne constraints on both A and H . Again, the first model containing
everal levels of decomposition was purely sequential [61], and
as outperformed by more recent approaches based on the deep
F algorithm; see for example [62]. We refer the reader to [63]

or a comprehensive review of shallow and deep CF.

.2.5. Semi-supervised settings
While the models presented so far were all unsupervised,

ome deep MF models are able to cope with available prior
nformation in a semi-supervised fashion, such as deep weakly-
upervised semi-NMF [11]. To handle side information, a weighted
raph is built at each layer, where the nodes are the data points
nd two nodes are connected by an edge if they share the same
abel. In the simplest case, the graph weights, denoted by the
× n symmetric matrix Gl for the lth layer, are binary, that is,
(i, j) = 1 if X(:, i) and X(:, j) share the same label w.r.t. the
l

7

eatures extracted at layer l. A smoothness regularization term
s added to the loss function of (5) with the form:

L∑
l=1

λl

n∑
j,k=1
j̸=k

∥Hl(:, j) − Hl(:, k)∥2
2Gl(j, k) =

L∑
l=1

λlTr(HlLlHT
l ) (6)

where Tr(.) denotes the trace of a matrix, that is, the sum of its
diagonal elements, and Ll = Dl−Gl is the Laplacian matrix at layer
l with Dl a diagonal matrix such that Dl(j, j) =

∑n
k=1 Gl(j, k) for

j = 1, . . . , n. Intuitively, (6) enforces the hidden representations
Hl(:, j) and Hl(:, k) of data points j and k that share the same label
at layer l to be as close as possible.

When the available information is such that each data point
might be associated with several labels, a dual-hypergraph Lapla-
cian is built to grasp richer underlying information and is such
that an edge can connect any number of vertices [64].

3.2.6. Deep tensor decomposition
The extension of deep MF to tensors, that is, arrays of more

than two dimensions, has not yet been much investigated. The
analog of shallow MF in the tensor world is the canonical polyadic
decomposition (CPD), which decomposes a tensor as the sum of
rank-one tensors; see [65] and the references therein. Given a
tensor T ∈ RI1×I2×···×IK where K is the dimension of the tensor,
the CPD of rank R aims at finding the vectors a(i)j ∈ RIi (i =

1, . . . , K , j = 1, . . . , R) such that

T ≈

R∑
j=1

a(1)j ◦ a(2)j . . . ◦ a(K )j , (7)

where the ◦ operator denotes the outer product. The principle of
a CPD is illustrated on Fig. 3 for a 3-dimensional tensor.

An attempt of multilayer tensor decomposition has been pro-
posed in [66] for contextual-aware recommender systems (CARS),
and in [67] for audio sources separation in a mixed scene, as an
extension of the matrix model of [68]. Deep tensor decomposi-
tions have also been introduced for action recognition in [69] and
for the optimization of convolutional neural nets in [70].

However, all these models are quite different from each other
and do not resemble deep MF as defined in this paper. No general
framework has been introduced for deep tensor decompositions,
and it would be worth investigating deep CPD. A particularly
interesting feature of CPD is that it has weak identifiability con-
ditions (see for example [71] and the references therein), as
opposed to standard MF, which could be leveraged in the deep
setting.

3.2.7. Related models
In this section, we briefly introduce two models closely related

to MF that have also been extended to a deep setting, namely
transform learning and dictionary learning. There are not the
main focus of the survey so we encourage the interested reader
to look at the references for more details.

Given an input data matrix X ∈ Rm×n, the goal of dictionary
learning (DL) is to find a dictionary D ∈ Rm×r , whose columns
are referred to as atoms, and a representation matrix H ∈ Rr×n

such that each column of H is sparse, typically k-sparse (that is,
with at most k non-zero entries, where k is a parameter). When
the number r of atoms is smaller than m, the dictionary is said
to be undercomplete and DL is equivalent to SCA. However, DL
typically looks for overcomplete dictionaries with m ≪ r . A
particularly interesting variant of DL is the convolutional sparse
coding (CSC) where the atoms are convoluted with the represen-
tation matrix H . In [5], Papyan et al. proposed deep CSC where
successive factorizations are performed exactly as in (2), with
sparsity constraints on the H ’s; the columns of H are required
l l
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Fig. 3. Canonical polyadic decomposition of a 3-D tensor.
to be kl-sparse, where kl is the desired level of sparsity at layer
l. Similarly to deep MF, this decomposition allows a hierarchical
interpretation of the dictionaries extracted. When a sequential
thresholding algorithm is applied to enforce sparsity, deep CSC is
equivalent to the forward pass of a convolutional neural network
(CNN).

Transform learning [72] also shares similarity with MF. Given
a matrix X , it consists in premultiplying X with W to obtain
H , such that WX ≈ H . The matrix H is promoted to be sparse
through an ℓ1 norm regularizer while W is constrained to be
full rank. Recently, a sequential multilayer transform learning
framework was proposed by Maggu and Majumdar [73], similar
to the multilayer idea of Cichocki et al. [30]. At the first layer, the
approximation W1X ≈ H1 is considered. Then, H1 is premultiplied
such that W2H1 ≈ H2, and the process continues until WL and HL
re found, with all Hl’s sparse and all Wl’s full-rank. Similarly to
eep MF, the matrices Hl’s are hierarchical representations of the
riginal data points that can be used for further clustering.

.3. How to solve deep MF?

In this part, we briefly describe the initialization techniques as
ell as the algorithms that can be used to solve the sub-problems
.r.t. either Wl or Hl at lines 6 and 7 of Algorithm 3. As these
lgorithms are standard optimization techniques, we refer the
eader to previous surveys [18,20] for more details and references
n their applications in CLRMA problems. We also discuss the
hoice of several parameters such as the number of layers L and
he inner ranks dl’s.

.3.1. Initializations
The most commonly used initialization of deep MF consists

n applying a sequential decomposition of the data matrix X , but
here is no guarantee about the quality of this initialization. For
he initialization of each factor Wl and Hl of each layer l, several
outines have been presented in the literature; for example ran-
om initializations, initializations based on the SVD of X [11], or
olumn subset selection methods that initialize W with columns
f X [74]. The study of initialization techniques dedicated to deep

MF is still an open direction of research.

3.3.2. Algorithms
Similarly to standard NMF, most algorithms for deep MF con-

ist in alternatively updating each factor while keeping the others
ixed as in Algorithm 3. The stopping criterion can either be a
aximum number of iterations, a sufficient decrease of the loss

unction, or a sufficient modification of the factors between two
onsecutive iterations.
The subproblems w.r.t. either Wl or Hl for any l are typically

olved using standard first-order optimization algorithms. Tri-
eorgis et al. [11] used a closed-form expression for the Wl’s
nd a multiplicative update (MU) for the Hl’s. MU is a well-
nown algorithm to solve NMF [75], and was also proposed to
olve a sequential multilayer MF in [76]. Other techniques such
s projected gradient descent (PGD) method [77], possibly com-
ined with an acceleration scheme, such as Nesterov’s one [78]
8

are widely used; see for example [34,47]. PGD, a well-known
first-order method to solve constrained optimization problems,
is an extension of gradient descent (GD) where the iterates are
projected on the feasible set at each iteration. The acceleration
consists in adding a momentum term to the gradient step to allow
faster convergence. Another standard optimization scheme is the
alternating direction method of multipliers (ADMM) which con-
sists in reformulating the problem by decoupling the variables,
and minimizing the augmented Lagrangian. It is standard in the
CLRMA literature [79], and it has also been used for constrained
deep MF in [80].

Since most deep MF algorithms are based on first-order meth-
ods, their computational cost is linear w.r.t. the size of the input
data and the ranks, and hence these methods are scalable. In
other words, the computational cost grows linearly with the
number of data points, the dimension of the data, and the rank
of the factorizations. For example, the computational cost of the
algorithm of Trigeorgis et al. [11] requires O(Lt(mnd+ (m+n)d2))
operations, where t is the number of iterations and d = max

l=1,...,L
dl.

3.3.3. Parameters
The choice of the parameters of deep MF model, and in par-

ticular the number of layers and the inner ranks, mainly depends
on the application. In most cases, the number of layers used
for the results reported in the literature does not exceed three.
Moreover, the ranks tend to be chosen in decreasing order as
the first layers of the model are expected to capture attributes
with a larger variance, thus requiring a larger capacity to encode
them, while the last layers capture attributes with a lower vari-
ance [11]. This observation is also derived from the analogy with
autoencoders: the inner layer of an autoencoder is generally the
one that contains fewer units as the goal is to obtain a compact
representation of the input data; see Section 5 for more details.
On the other hand, when the decomposition is performed on the
features matrices such as in 3.2.1, the ranks should also be chosen
in decreasing order [42]: given W1 ∈ Rm×d1 with d1 columns in
dimension m, it only makes sense to approximate the columns of
W1 ≈ W2H2 as linear combinations of d2 ≤ d1 columns of W2
otherwise there exists an infinity of solutions; see Section 4.1 for
two numerical examples. Therefore, there is no compromise over
the choice of these parameters and their values mainly depend
on the application at hand. Of course, there is an implicit link
between the number of layers and the choice of the ranks since,
in general, each new layer has a rank equal to at most the rank
of the previous layer minus 1.

4. Applications

We now describe several applications for which deep MF is
useful.

CLRMA has already been used successfully for countless real-
world applications, and deep MF models have contributed to
improve the performances. However, a clear definition of deep
MF is absent within the community, and very diverse uses of this
terminology have been used. Besides, [81] mentions that some
researchers call their model ‘‘deep MF’’ but use it for supervised
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asks, or introduce a high degree of non-linearity inside it. This
s for example the case of [82] that performs deep non-linear
atrix completion, and [83] where the inner representations are
btained through a deep highly non-linear MF architecture. The
erm ‘‘deep MF’’ was also given to an iterative procedure to solve
lassical MF through a deep unfolding of the iterations over time
n [84], though this has almost nothing in common with the deep
F as we have defined it in this paper.
Therefore, in this part, we mainly focus on works in the same

pirit as Trigeorgis [11], aiming to extract hierarchical features in
non-supervised context, which has led to breakthrough results

n several applications. This section is organized as follows. In
ection 4.1, we present two simple showcase examples show-
ng the ability of deep ONMF to extract hierarchical features.
e choose deep ONMF because, as explained in Section 3.2.1,

ts factors are easily interpretable. A Matlab implementation is
vailable2 to allow the interested reader to explore these deep
F examples, and play with the different parameters. Then, in
ection 4.2, we present several applications for which deep MF
as been successfully used in the recent literature.

.1. Two showcase examples

In this section, we detail two showcase examples on which
eep MF reveals its inner workings. The first one is recommender
ystems (Section 4.1.1), and the second one is hyperspectral un-
ixing (HU) (Section 4.1.2). For both applications, we describe

he results obtained with deep ONMF (see Section 3.2.1), which
s a variant of deep MF particularly easy to interpret. Indeed, as
ach representation matrix Hl contains only one non-zero entry
er column, each data point is associated with a single cluster.

.1.1. Recommender systems
Recommender systems consist in predicting the ratings of

sers over unseen items based on historical ratings on seen items.
n other words, given an incomplete rating matrix X ∈ Rm×n

of n users over m items (such as movies), the goal is to predict
the missing entries. A standard approach to perform this task is
by factorizing X as the product of two matrices W ∈ Rm×r and

∈ Rr×n where W contains the ratings of r basis users over the
m items and H represents the proportions in which each user
behaves as the r basis users [85]. In the following, we describe
how deep MF is able to extract hierarchical levels of basis users
on a simple example.

Let us consider a matrix X ∈ R9×15 such that X(i, j) contains
the rating of user j for movie i, and is between 1 (highly dislike)
and 10 (highly like). Our goal is to apply deep MF on X and show
the hierarchy of basis users extracted. The matrix X that will be
considered throughout this synthetic example is the following:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 8 10 8 9 4 1 2 3 2 4 1 3 5 2
8 8 7 8 10 5 1 2 6 1 4 2 2 1 2
9 9 9 9 10 4 1 4 2 1 4 3 1 1 1
3 1 2 1 3 8 8 7 8 10 3 4 1 2 2
2 1 3 2 3 9 10 9 9 8 2 2 2 2 2
1 2 1 1 2 8 8 9 9 8 3 2 3 3 1
4 1 1 2 2 2 5 1 1 5 9 7 8 9 7
2 2 2 1 2 2 6 2 1 3 8 8 8 8 8
1 2 2 1 3 2 4 1 1 4 6 9 8 10 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us suppose, for example, that the first three movies (first
three rows of X) are horror movies, the next three are comedy,
and the last three are biopics. We observe that the first five users
mostly enjoy horror movies, the next five ones comedies, and the
last five biopics. Note that we do not consider missing data in this
example, as our goal is to interpret the deep MF decomposition,
9

Fig. 4. The HYDICE Urban hyperspectral image.

rather than predicting missing entries. We apply deep ONMF on
X with L = 2, d1 = 4, d2 = 3, that is, by computing the following
decomposition:

X ≈ W1H1, H1HT
1 = I4, (W1,H1) ≥ 0,

W1 ≈ W2H2, H2HT
2 = I3, (W2,H2) ≥ 0.

(8)

To render the interpretation of the factors easier, we relax the
orthogonality constraints by only imposing that HlHT

l is diagonal,
which does not change the hard clustering interpretation but
simply allows each row of Hl’s to have a norm different from 1.
In counterpart, we normalize Wl’s such that all the elements are
between 0 and 10. This allows an easier comparison between the
features extracted at each layer.

Let us interpret such a decomposition, layer by layer. At the
first layer, we have X ≈ W1H1, and the matrices W1 and H1 are
as follows (the values are rounded to one digit of accuracy):

W1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.1 1.7 3.4 3.8
8.9 1.1 4.9 2.7
10.0 1.1 3.7 2.5
2.2 10.0 8.6 3.0
2.4 10.0 10.0 2.5
1.5 8.9 9.6 3.0
2.2 5.5 1.5 10.0
2.0 5.0 1.8 9.9
2.0 4.4 1.5 10.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

H1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.88 0 0 0
0.87 0 0 0
0.92 0 0 0
0.87 0 0 0
1.05 0 0 0
0 0 0.92 0
0 0.92 0 0
0 0 0.85 0
0 0 0.92 0
0 0.88 0 0
0 0 0 0.82
0 0 0 0.80
0 0 0 0.79
0 0 0 0.89
0 0 0 0.71

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

The columns of W1 are themselves combinations of those of W2,
as W1 = W2H2 with H2:

H2 =

(1 0 0 0
0 1.02 0.98 0
0 0 0 1

)
.

2 https://bit.ly/3q4wRW8.

https://bit.ly/3q4wRW8
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At the second layer, we have X ≈ W2Ĥ2, with Ĥ2 = H2H1. As
2 = 3, we expect that each column of W2 corresponds to the
rofile of a basis user liking only one category of movies, which
s indeed the case as we obtain

W2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.1 2.7 3.8
8.9 3.3 2.7
10.0 2.6 2.5
2.2 9.1 3.0
2.4 10.0 2.5
1.5 9.3 3.0
2.2 3.2 10.0
2.0 3.1 9.9
2.0 2.7 10.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ĤT

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.88 0 0
0.87 0 0
0.92 0 0
0.87 0 0
1.05 0 0
0 0.91 0
0 0.94 0
0 0.84 0
0 0.91 0
0 0.90 0
0 0 0.82
0 0 0.80
0 0 0.79
0 0 0.89
0 0 0.71

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

he first column of W2 corresponds to a basis user liking horror
ovies, the second comedies, and the last biopics.
The first and fourth columns of W1 are identical to the first

nd third columns of W2 respectively while the second and third
olumn of W1 bring more refined information. While the second
olumn of W2 only exhibits strong ratings for items 4 to 6 and
ow ones for the other items, the second and third columns of
1 correspond to two different patterns such that the second
asis user of layer 2 can be seen as the merging of two more
nformative basis users at layer 1. Both the second and third
olumn of W1 have high ratings over items 4 to 6, as for the
econd column of W2 but the other ratings are different. Indeed,
he second column of W1 has intermediate ratings for biopics
items 7 to 9) but very poor ones over horror movies (items 1 to
), and conversely for the third column. This level of granularity
s not caught by the second layer of decomposition, which grasps
he more general three main patterns that appear at first sight
hen looking at X . This justifies the benefit of using two layers
f factorizations. To be more precise, as d1 > d2 in this example,
eep MF first extracts 4 refined basis users and then gather two
f them at layer 2 to model the more global structure of the data.
Let us mention that a single layer ONMF with r = 4 recovers

atrices similar to W1 and H1, and similarly when r = 3 at the
ther layer. However, single layer factorizations do not exhibit
ny hierarchical relation between basis users.

.1.2. Hyperspectral unmixing
Hyperspectral unmixing (HU) is a classical application of NMF,

nd many models taking into account various priors have been
eveloped [86,87]. A hyperspectral image is composed of n pixels,
ach one characterized by the reflectance value (fraction of the
ight reflected) in m wavelengths, which is referred to as its
pectral signature. Representing this image as a matrix X ∈
m×n where each column is the spectral signature of a pixel,
he purpose of HU is to identify the spectral signature of the
materials present in the image, that is, the columns of W , as
ell as their respective abundances in every pixel, that is, the
olumns of H . However, the precise number of materials is not
lways easy to determine as some materials have similar spectral
ignatures or are highly mixed. In this section, we consider the
YDICE Urban hyperspectral image which is an airborne image
f a Walmart in Copperas Cove (Texas); see Fig. 4. It is made of
= 307 × 307 pixels with m = 162 spectral bands. There are

everal versions of the ground truth depending on the number of
aterials considered [88].
Deep ONMF is able to extract the materials in a hierarchical

anner, as illustrated on Fig. 5 which shows the abundance maps
 s

10
l’s, representing the proportions of a given material in the pixels.
his solution was obtained by applying deep ONMF on the Urban
mage with L = 4, d1 = 7, d2 = 6, d3 = 4, d4 = 2. The
irst layer extracts several materials, namely two types of grass,
rees, road, dirt, metal and roof. At the next layers, the materials
re successively merged by two within a single cluster. At layer
, the two clusters corresponding to road and metal, which have
imilar spectral signatures, are merged in a single cluster. At layer
, the road/metal and dirt are merged to create a single cluster
hile the two kinds of grass are also merged in a single cluster.
t layer 4, the road and roof are merged, while trees and grass are
lso merged in a cluster made of vegetation. Clearly, this example
llustrates the ability of deep MF to extract materials in a hierar-
hical manner in hyperspectral images. Compared to traditional
hallow extraction methods, deep MF brings an undeniable value
n terms of interpretability.

Fig. 6 provides a comparison between the extracted spectral
ignatures at the third (d3 = 4) layer with a ground truth
rom [89].

The signatures retrieved by deep MF are similar to the ground
ruth, which indicates that deep MF is able to extract meaningful
eatures through several layers.

.2. Real-world applications of deep MF

In this section, we review several applications of deep MF
resented in the literature.

.2.1. Recommender systems
We have already shown that deep MF extracts hierarchical

nformation in the context of recommender systems in Sec-
ion 4.1.1. Several models based on deep MF have been proposed
n the recent literature.

Mongia et al. [90] use a projected gradient descent method to
ackle deep MF with missing entries in the data matrix X . They
efer to their model as deep latent factor model, and use it to infer
issing entries while extracting several layers of explanatory

actors, with a similar interpretation as in our showcase example
n Section 4.1.

Xue et al. [91] derive a latent representation of both users and
tems through a so-called ‘‘deep factorization’’ though the model
s different from the deep MF as defined in this paper. More pre-
isely, based on a rating matrix Y ∈ Rm×n containing both explicit
atings and non-preference implicit feedback (corresponding to
0 value) of m users over n items, each row Y (i, :) is mapped

o a vector pi such that pi = Y (i, :)W1 . . .WL and similarly (with
nother set of matrices) for each column Y (:, j), which is mapped
nto rj. Then, a matrix Ŷ is built, such that Ŷ (i, j) =

pTi rj
∥pi∥∥rj∥

, and a
cross-entropy based loss function between this similarity matrix
and the original rating matrix Y is minimized on a training subset
f the data. This deep approach reaches higher performance than
tate-of-the-art MF methods in terms of the ranking of suggested
tems, based on their predicted ratings.

Deep MF was also used in the context of recommender sys-
ems with implicit feedback when the ratings are not given as
numerical value but as a binary feedback (such as ‘‘like’’ or

‘dislike’’) [92]. For each user and each item, a vector containing
oth a representation of this implicit feedback and side infor-
ation is provided. Then, deep MF is applied separately on the
sers and items to derive meaningful representations H (ui)

L ’s and
(vj)
L ’s for all users ui’s and items vj’s respectively, where the inner
imension dL is the same for both factorizations. The rating rij of
ser i over item j is predicted as rij = H (ui)T

L H
(vj)
L +Gui +Gvj where

ui and Gvj are obtained through maximum likelihood estimation
nd describe the specific influence of user and item, respectively.
sing deep MF improves the root mean square error between the
redicted and actual ratings compared to standard MF models on

everal benchmark data sets.
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Fig. 5. Abundance maps hierarchically extracted by deep ONMF on the Urban data set. From top to bottom: first, second, third and fourth layer.
Fig. 6. Comparison between the endmembers extracted by deep ONMF at the third (d3 = 4) layer and the ‘‘ground-truth’’ endmembers for the HYDICE Urban
hyperspectral image.
4.2.2. Multi-view clustering
Multi-view clustering consists in clustering items for which

the data are described by several views; for example, images
described both by their pixels and textual tags, see [93] for a
survey. In [94] and [95], each data matrix X (v) of each of the V
views is deeply factorized and the last hidden representations
H (v)

L ’s are constrained to be the same for all views. Cui et al.
design the objective function as a weighted sum of the squared
Frobenius norm of the residuals of each view, whose weights are
also learned in [95]. A further refinement is proposed by Wei
et al. who add a penalty term measuring the redundancy of the
clusterings Hi and Hj of different layers i and j to the objective
function [96]. More precisely, matrices C (l)

= HT
l Hl ∈ Rn×n for

all l indicate if two data points are clustered identically or not
at layer l. A penalty aiming at minimizing ∥C (i)

⊙ C (j)
∥ is added
1

11
to the objective for each pair of layers, to avoid redundancy,
where ⊙ denotes an element-wise multiplication.

A semi-supervised variant is considered by Xu et al. [97] with
a graph Laplacian penalty aiming to both minimize the gap be-
tween the inner representation HL of instances sharing the same
label and maximize the gap between the inner representation
HL of instances belonging to different classes. Huang et al. [98]
constrain the entries of HL to be either 0 or 1. Finally, when
the data are given through several views, such as images and
documents, Xiong et al. [99] show that binary hashing codes
derived through deep MF are able to find meaningful items with
a binary code close to the one of a given query. In addition to
the data fitting error, the loss function contains terms that aim
at finding a unified latent representation H , and at minimizing

the classification error of a linear classifier based on H . Moreover,



P. De Handschutter, N. Gillis and X. Siebert Computer Science Review 42 (2021) 100423

e
+

4

t
g
t
t
i
o
H
T
b
t
w
s
l

4

f

(
G
a
i
m
t
s
p
t
m
a
s
i
p
n
t
d

4

s
i
c
c

t
T
w
L
w
s
l

4

f
a
s
t
s
s

a

o
r
M
e
e
t
a
H

a
b
t
A
s
i
a
a
H
A
c

4

a
i
a
X
a
t
w
N
t
t
l
w
c
k
a
m
N

c
(
u
u
i
r

5

l
m
v
n
b

e
h
o
m
p
i

ach entry of the unified code matrix H is constrained to be either
1 or −1.

.2.3. Community detection
Community detection consists in identifying communities,

hat is, subsets of nodes that are highly connected, inside a
iven graph. While NMF is able to extract overlapping communi-
ies [100], deep MF allows to interpret the dynamics along which
he nodes are progressively grouped. More precisely, taking as
nput of deep MF the adjacency matrix leads to the extraction
f the membership coefficients of all nodes to dl communities
l ∈ Rdl×n at layer l with dL ≤ dL−1 ≤ · · · ≤ d0 = n [101].
he interest of the deep architecture lies in the fact that nodes
elonging to the same community gather closer to each other in
erms of inner representations as the layers go deeper. In other
ords, deep MF allows to extract communities at different scales,
maller communities at the first layers are merged together in
arger communities in the deeper layers as deep MF unfolds.

.2.4. Hyperspectral unmixing
As illustrated in Section 4.1, deep MF can be used meaningfully

or HU, extracting several layers of materials.
The early sequential multilayer NMF of Cichocki et al. [30]

2) was used, together with sparsity regularization, by Rajabi and
hassemian [102]. Though the endmembers are estimated more
ccurately, no additional insight is given on the interpretabil-
ty power of the model. Later, Tong et al. [103] use the deep
odel of Trigeorgis et al. [11] and show that it is efficient for

he extraction of endmembers, though the interpretation of the
uccessive inner representations is not emphasized. A similar ap-
roach takes into account an additional regularization [104]: on
he one hand a sparsity constraint is considered on the abundance
atrix HL while on the other hand, a spatial regularization is
pplied through the total variation minimization (TVM). In a nut-
hell, TVM [105] is a well-known regularization which consists
n computing the differences between the abundances of each
air of adjacent pixels and minimizing their sum to reduce the
oise and get a smooth abundance map. A deep purely sequen-
ial model of archetypal analysis (deep AA), similar to the one
eveloped by [58] (see Section 3.2), was also used for HU in [106].

.2.5. Synthetic aperture radar (SAR)
SAR consists in analyzing the changes that appear on the

urface of the Earth through high-resolution images. Given two
mages of the same location at different times, the goal of SAR
hange detection is to produce a binary map indicating the
hanged and unchanged pixels over the considered period.
Gao et al. [107] use deep semi-NMF to cluster the pixels in

hree categories: ‘‘unchanged’’, ‘‘changed’’ and ‘‘intermediate’’.
hen, a more refined classification step accurately determines
hich pixels of the landscape have changed or not. Similarly,
i et al. propose to solve the SAR change detection problem
ith non-smooth deep MF [108]. The framework is again semi-
upervised since a classification stage aims at reconstructing the
abel matrix based on the inner representation matrix HL.

.2.6. Audio processing
The audio source separation problem consists in extracting the

requential spectra of the sources contained in a sound recording
s well as their respective activations over time. NMF has been
hown to be efficient to solve this problem, when the matrix X is a
ime–frequency representation of the input data, for example the
pectrogram obtained with a short-time Fourier transform (STFT);
ee [36] and the references therein.
Sharma et al. [109] use deep MF for speech recognition: given
matrix X of n frames, each one corresponding to a sequence
 t

12
f successive words, described by an m-dimensional vector cor-
esponding to the well-known cepstral coefficients [110], a deep
F alternating sparse and dense layers factorizes X . The authors
mpirically notice that alternating sparse (l odd) and dense (l
ven) layers leads to more discriminative features, and the fea-
ures used for the classification of the frames are obtained by
pplying a PCA on the concatenation of the inner representations
l’s corresponding to sparse layers.
Hsu et al. [111] apply deep MF on the spectrogram matrix of

set of spoken sentences to extract several layers of frequential
asis features, and is better able to separate the speakers in a mix-
ure than a simple one-layer NMF. Thakur et al. [112] used deep
A to extract sources based on the spectrograms of bioacoustics
ignals, with the dictionaries learnt at the first layers correspond-
ng to archetypes on the convex hull of the data while deeper
toms being more in the center of the data. The classification
ccuracy obtained with a SVM based on the inner representations
L’s is higher than other state-of-the-art classification methods.
n extension was proposed in [113] with a more sophisticated
lassification approach.

.2.7. Perspectives
Deep MF does not seem to have been tested yet on several

pplications in which it has important potentialities. For example,
n text mining tasks, it seems logical that hierarchical structures
ppear. For example, for NMF, given a word-by-document matrix
where the entry X(i, j) is the number of times the word i

ppears in the document j, NMF allows to automatically extract
opics as the columns of the basis matrix W , while H indicates
hich document discusses which topic [7]. In this context, deep
MF would be able to extract hierarchies of topics, from coarser
o finer topics. For example, the first layers would extract general
opics such as politics, geography and sports, while the deeper
ayers would refine these topics in sub-topics. For example, sports
ould be divided into tennis, soccer and golf, while soccer would
ontain results from different competitions. Note that NMF is
nown to be a simple topic model equivalent to latent semantic
nalysis/indexing (PLSA/PLSI) [114], and designing refined deep
odels would be of particular interest, similarly as done for
MF [115].
Though this survey focuses on linear deep MF, some appli-

ations would benefit from the introduction of non-linearities
see Section 5 for more details). For example, in hyperspectral
nmixing, scattering and various interactions may justify the
se of non-linear models [116]. Therefore, it would be interest-
ng to investigate non-linear deep MF in view of the specific
equirement of the applications.

. Connections with neural networks

Several connections can be made between deep MF and deep
earning. However, we restrict ourselves as much as possible to
odels aiming at extracting features from data in an unsuper-
ised and interpretable way. Works embedding MF ideas in a
eural network architecture, such as [117–120] are interesting
ut are further away from the focus of this survey.
Deep artificial neural networks [8] have been known for sev-

ral years as one of the best classification paradigms. On Fig. 7, we
ave represented a standard neural network made of a succession
f P fully-connected layers.3 Each layer k, k = 0, . . . , P − 1, is
ade of sk units. Let us consider a data matrix X ∈ Rm×n of n
oints in dimension m = s0 and a binary label matrix Y ∈ Rc×n

ndicating the membership of each data point X(:, j) to each of

3 We use an unusual naming of the parameters to avoid the confusion with
he notation introduced for deep MF.
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Fig. 7. Illustration of an artificial neural network.
he c = sP−1 classes, that is, Y (i, j) = 1 if X(:, j) belongs to the
th class. Given X(:, j) for any j as input, the network produces as
utput a c-dimensional vector Ŷ (:, j). Calling Zk ∈ Rsk−1×sk , k =

1, . . . , P − 1, the weights matrix between layer k− 1 and layer k,
the first layer computes a vector M1(:, j) = g(Z1X(:, j)) where g is
a non-linear activation function applied element-wise. Then, any
layer k, k = 2, . . . , P − 1, computes Mk(:, j) = ZkMk−1(:, j), with
MP−1(:, j) = Ŷ (:, j). The goal of the neural network is to classify
the data points X(:, j)’s at best, that is, optimize the Zk’s such
that the prediction Ŷ (:, j) is as close as possible to the ground-
truth Y (:, j) for all j. Overall, considering all the data points, the
prediction matrix is given by Ŷ = g(ZP−1g(ZP−2 . . . g(Z1X))).

Autoencoders [121] are particular neural networks where the
output matrix does not correspond to a membership matrix but
is identical to the input, that is, Y = X . Assuming that the
number of layers P is odd, the purpose of an autoencoder is to
extract a compressed representation MQ of the input data at the
central layer Q =

P−1
2 through the encoder, and approximate

s well as possible the initial data back after the decoder layers.
ig. 8(a) provides an illustration when the encoder and decoder
re symmetric, that is, sk = sP−1−k for all k = 0, . . . , P − 1 and

Zk = ZT
P−k for all k = 1, . . . , P − 1. This leads to the following

approximation

X ≈ Ỹ = g(ZT
1 g(Z

T
2 . . . g(ZT

QMQ ))).

Let us number the layers in the reverse sense, that is, let us
onsider l = P − 1 − k and dl = sl for l = 1, . . . , L. Let us also
enote Wl = ZP−l = ZT

l and Hl = MP−1−l, with L = Q such that
he decoder performs the following decomposition:

X ≈ Ỹ = g(W1g(W2 · · · g(WLHL))). (9)

hen the activation function g is the identity, (9) becomes

X ≈ Ỹ = W1 . . .WLHL, (10)

hich corresponds to a so-called linear network. The decomposi-
ion performed by (10) is the same as deep MF but deep MF usu-
lly requires additional constraints, such as the non-negativity of
ome factors, to render the solution meaningful and interpretable
see Section 1).

A widely used activation function is the rectified linear unit,
hat is,

g(x) = ReLu(x) = max(x, 0).
n this setting, each inner representation matrix Hl−1 = g(WlHl)
for l = 2, . . . , L is imposed to be non-negative, as in the orig-
inal deep MF of [11]. Though such a network is very similar
13
to deep MF, as shown on Fig. 8(b), the two models are not
exactly equivalent since the representation matrix HL of an au-
toencoder is learnt in a supervised way and is given by HL =

g(W T
L g(W

T
L−1 . . . g(W T

1 X)))), which makes it close to deep archety-
pal analysis. In fact, autoencoders are mainly used in semi-
supervised settings, for example to pre-train the networks for
classification tasks, while deep MF mines unknown hierarchical
features hidden in the data set. This connection suggests that the
ranks of the factorization dl’s in deep MF should be chosen in
a decreasing order, as for the central layer of an autoencoder,
corresponding to HL, is usually the smaller one.

Interestingly, the use of non-negativity constraints on the
representation matrices within an autoencoder with a single layer
in the encoder has shown to produce parts-based representa-
tions, as for NMF, while the overfitting was reduced [122]. Also,
improvements were achieved in [123] using a deep structure
promoting sparse activations Hl’s, which is similar to deep sparse
MF. However, only the pretraining stage is unsupervised and is
similar to deep MF (though non-linear activations are used), while
a supervised classification stage follows. This connection between
neural networks and deep MF was also highlighted in [124]
where the discriminative power of such a hierarchical model was
observed on topic mining and audio source separation tasks.

Also inspired by deep learning non-linearities, Trigeorgis et al.
[11] proposed to introduce a non-linear function, such as the
sigmoid, at each layer of the model (2), that is, use Hl−1 =

g(WlHl) for all l where g(x) =
1

1+e−x , which still provides a
parts-based decomposition but at the cost of a possible weaker
interpretability [125].

Similarly, deep AA is closely related to neural networks. An
archetypal regularization based on an autoencoder was proposed
by van Dijk et al. [126]. The latent representation H is learnt
through a deep encoder performing a non-linear transformation
of the input data and the addition of Gaussian noise to H en-
forces the basis vectors to be close to the data at the decoding
layer. More precisely, the noise pushes the columns of H outside
the unit simplex, which in turn enforces the columns of W
to shrink in order to maintain a low reconstruction error. The
strong connection between autoencoders and deep AA in the
process of learning hierarchical features in image patches was
also highlighted in [127].

6. Theoretical aspects of deep MF

Although numerous formulations, algorithms and application
have been developed for deep MF, proper theoretical studies
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Fig. 8. Illustration of the similarity between (a) deep autoencoders and (b) deep MF.
emain scarce, apart from insights from the deep learning com-
unity working on linear networks. To the best of our knowl-
dge, the main theoretical contributions so far are mostly the
onvergence of algorithms, and to a lesser extent identifiability.

.1. Convergence issues

When the factors of deep MF are updated through a BCD (see
lgorithm 4), the subproblems w.r.t. a single factor are convex,
s for most CLRMA. Standard convergence results give conditions
nder which the iterates tend to stationary points, depending on
hether the subproblems are solved through an exact algorithm
r through an approximate framework, such as majorization min-
mization (MM). This encompasses most gradient descents used
n practice. For example, when the global objective function is
he least squares (5), using alternating projected gradient de-
cent is guaranteed to converge to stationary points, because the
ubproblems are convex and Lipschitz smooth [128].

.1.1. Convergence of first-order methods
The effect of the number of layers on the convergence of first-

rder methods applied on the problem (5) has not been much
tudied, to the best of our knowledge, but recent results have
een obtained on deep linear networks (see Section 5).
Some of the theoretical results presented in the following are

ot directly related to the deep MF models described so far but
ather concern networks aimed at supervised learning. However,
e strongly believe that these insights coming from the deep lin-
ar networks community might be helpful to better understand
eep MF and possibly open directions of future research. Let us
ention a few important results. We refer the interested reader

o the recent survey [129] for more details.
When the thinnest layer of a deep linear network is either the

nput or the output one, Laurent et al. [130] showed that deep
inear networks with arbitrary convex differentiable loss produce
14
local minima that are all global. In addition, when the input data
is whitened (that is, the covariance matrix is the identity) and
a proper initialization of all layers is chosen, Arora et al. [131]
proved the linear convergence of gradient descent to a global
minimum on such a network. This generalizes the results of [132]
in which linear residual networks, where the weights of each
layer are initialized to be the identity matrix and the inner ranks
d0 = m, . . . , dl are the same, are considered. Indeed, the network
architecture is more general and softer restrictions on the initial-
ization are required. When the loss function is the squared error
between Y and Ŷ , Arora et al. [133] provide an interesting result:
If the weights Wl’s are updated with gradient descent and if the
initialization W (0)T

l+1 W (0)
l+1 = W (0)T

l W (0)
l holds for all l, then there

exists an equivalent update rule for the end-to-end matrix W =

W1 · · ·WL which can be seen as an acceleration of the gradient
descent update as long as the learning step is sufficiently small.
As the depth L grows, the effect is intensified which shows that
over-parametrization, that is, considering several hidden layers,
might accelerate the optimization process.

In the same spirit, when the network is restricted to be such
that each hidden layer contains the same number d of units, but
without considering specific assumptions on the input data nor
the initialization, Du et al. [134] prove the linear convergence of
gradient descent to a global optimum if the width of each layer
is sufficient.

Finally, the convergence of gradient descent on a function of
a product of matrices, especially the loss ∥Y −

∏
l Wl∥

2
F , where

Y = −Id and each Wl is a square matrix of size d was studied
by Shamir et al. in [135]. Independent initialization of each layer
is considered, that is either Xavier initialization (the entries of
the Wl’s are sampled from a zero-mean Gaussian distribution)
or near-identity initialization (each Wl = I + M with I the
identity and M a matrix whose elements are sampled from a
zero-mean Gaussian distribution). The smaller the variance of the
initialization distribution is, the more likely it is that gradient
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escent has exponential runtime w.r.t. the depth of the network,
herefore advocating for shallow nets in this case. However, this
esult is rather empirical and the architecture of the network is
articular, as each layer has the same number of units.

.1.2. Low-rank structure
Arora et al. [81] demonstrate some advantages of uncon-

trained deep MF compared to standard shallow MF [136] in
erms of regularization properties. Indeed, deep MF enhances
n implicit tendency towards low-rank solutions. The problem
onsidered is matrix completion, that is, impute missing entries
n a given matrix X ∈ Rm×n. When the number of known entries
s sufficiently large (this depends on the rank of X), factorizations
f any depth admit solutions that tend to minimize the nuclear
orm of the end-to-end matrix W = W1 · · ·WL, that is, to
inimize the sum of the singular values of W . However, when

here are fewer observed entries, the approximation tends to
ave a lower effective rank at the expense of a higher nuclear
orm, especially when the depth increases. More interestingly,
he evolution of the singular values of W obtained with gradient
low, that is, gradient descent with infinitesimally small learning
ate, reveals that the solutions tend to have a few large singular
alues and many small ones, with a gap that intensifies with
he depth of the factorization. This can be seen as an implicit
egularization promoting low-rank solutions.

In summary, the recent literature gives evidence of the ad-
antages of using a deep factorization, in terms of both speed
f convergence of gradient descent to a global minimum and
ow-rank-ness of the factors. However, the settings described
o not assume constraints on the factors of the decomposition,
nlike most deep MF models. Extending these observations to the
onstrained case is an important direction of research.

.2. Identifiability

Identifiability of exact deep MF is an important theoretical
esearch question. It consists in establishing the conditions under
hich the factors W1, . . . ,WL and HL can be uniquely retrieved,

up to trivial permutation and scaling. For various CLRMA prob-
lems, thorough conditions have been proposed; see for exam-
ple [17] for NMF, [45] for SCA and DL, and [21] for simplex-
structured MF, and the references therein.

Of course, any result for CLRMA can be extended to the cor-
responding deep MF model. Let us illustrate this with NMF. A
necessary condition for an exact NMF X = W1H1 with W1 ≥ 0
nd H1 ≥ 0 to be unique, up to permutation and scaling, is that
T
1 and H1 satisfy the so-called sufficiently scattered condition

SSC) [137]. Intuitively, the SSC requires that the rows of W1
nd the columns of H1 are sufficiently well spread within the
onnegative orthant and have some degree of sparsity. Then, the
wo-layer X = W1W2H2 is also unique, up to permutation and
caling, if H1 = W2H2 is unique, which is guaranteed ifW T

2 and H2
atisfy the SSC. Similar observations would apply for SCA, among
thers.
However, there are very few results tackling the identifiability

f deep MF directly. As far as we know, the only attempt is by
algouyres and Landsberg [138], in a very particular setting.
The factorization X ≈ M1(q1)M2(q2) . . .ML(qL) is considered

here each matrix Ml is described through a small number S
f parameters with ql ∈ RS for all l. A necessary and sufficient
ondition for identifiability in the noiseless case is provided as
ell as stability guarantees in the noisy case. However, these
re quite abstract conditions involving advanced concepts such
s the tensorial lifting property and the Segre embedding, and
hese conditions are difficult to check in practice. These results
re further discussed in [139] where the conditions are extended
o the case of convolutional linear networks.
15
Needless to say that the robustness to noise (also sometimes
eferred to as the stability) of deep MF models is also an impor-
ant issue that has not been investigated yet. In fact, even in the
atrix case, most known results apply to the unconstrained case
r under orthogonality constraints [140]. For most other CLRMA
roblems, such results are rather scarce and difficult to derive.

. Perspectives and conclusion

Deep MF is an emerging research topic, at the intersection
f low-rank matrix approximations and deep learning. In this
iterature review, we presented multilayer and deep MF vari-
nts, which are being used successfully in an increasing number
f applications, from recommender systems and hyperspectral
nmixing to multi-view clustering and community detection.
Although many models and algorithms have been introduced

or deep MF, the theoretical insights remain weak. In our opinion,
his is a main direction of research that should be tackled by deep
F researchers. Interestingly, a similar trend was observed for
eural networks: the theory started to be investigated thoroughly
and it is still a very active area of research) only after many
odels and algorithms were shown to perform well in practice.
Many perspectives have been presented throughout this sur-

ey, concerning the various aspects of deep MF. Let us summarize
hese perspectives:

• Choice of the parameters: The choice of the parameters,
namely the inner ranks and the number of layers, has not
been discussed much as it is mostly application dependent
(see Section 3.3). Establishing proper guidelines to choose
these parameters is a crucial issue.

• Identifiability: Identifiability of deep MF has not been in-
vestigated much, see Section 6.2. However, deriving condi-
tions for deep MF to be unique could be particularly mean-
ingful in some applications. In particular, it seems crucial to
ensure that the features extracted at each layer are suffi-
ciently different from each other and are meaningful. Most
properties of deep MF have only been observed empirically,
and the few theoretical results are only valid under specific
assumptions. Hence diving into the theoretical aspects of the
uniqueness of deep MF is promising direction of research.

• Loss function: Very few works have carefully investigated
the choice of the loss function, see the discussion in Sec-
tion 3.1. Besides, this influences the way the algorithms are
designed and the way the quality of the respective extracted
features is assessed.

• Design new models and algorithms: As evoked in Sec-
tion 4.2, many MF models have not been extended to a deep
setting yet. Moreover, efficient algorithms and initializations
dedicated to deep MF are still lacking (see Section 3.3).

• Links between deep MF and deep learning: Though there
exist obvious connections between deep neural networks
and deep MF as described in Section 5, they do not seem
to have been fully exploited yet. It is not clear whether
it is possible to integrate advanced deep learning frame-
works, such as convolutions, inside deep MF. Convolutional
networks are known to extract several levels of visual fea-
tures in image patches through highly non-linear opera-
tions [141]: is deep MF able of such performance in a linear
and more interpretable way ? Convolutions were already
integrated in shallow NMF under the so-called convolutive
NMF framework, which looks for temporal patterns inside
the data [142].

• Applications: Deep MF has not been applied yet on several
important applications such as text mining. A recent work
of Wang & Zhang [143] claims to apply deep MF for topic
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modeling but the deepness only results from a non-linear
transformation of the input data, while the factorization in
itself remains shallow.
Moreover, in the applications described in Section 4.2, the
interpretation of the features obtained at each layer is not
always clear. This is also an important research issue. In
particular, the original data points are usually clustered by
applying k-means on the last inner representation matrix HL.
However, more robust techniques taking into account the
information of the previous layers have not been used yet,
to the best of our knowledge.
Let us also emphasize the lack of ‘‘ground-truth’’ baselines
for deep MF: since deep MF is an unsupervised model in
its essence, it is hard to guess precisely which features are
expected at each layer and how to compare their quality in
a fair way. As done by Trigeorgis et al. [11], it is possible
to incorporate side information in the model, leading to
semi-supervised models.

We believe deep MF could be a particularly useful framework
s it combines the ability to extract hierarchical features, as deep
earning models, with a high interpretability power, as low-rank
atrix approximations. These advantages justify the necessity to
aintain research efforts in deep MF, especially to improve the
xplainability of AI techniques.
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